=== modified file 'src/helper/geom-pathstroke.cpp'
--- src/helper/geom-pathstroke.cpp 2016-08-03 13:29:38 +0000
+++ src/helper/geom-pathstroke.cpp 2016-11-28 20:42:57 +0000
@@ -1,6 +1,7 @@
/* Authors:
* Liam P. White
* Tavmjong Bah
+ * Alexander Brock
*
* Copyright (C) 2014-2015 Authors
*
@@ -746,33 +747,36 @@
len = l;
}
-void offset_cubic(Geom::Path& p, Geom::CubicBezier const& bez, double width, double tol, size_t levels)
-{
+double _offset_cubic_stable_sub(
+ Geom::CubicBezier const& bez,
+ Geom::CubicBezier& c,
+ const Geom::Point& start_normal,
+ const Geom::Point& end_normal,
+ const Geom::Point& start_new,
+ const Geom::Point& end_new,
+ const double start_rad,
+ const double end_rad,
+ const double start_len,
+ const double end_len,
+ const double width,
+ const double width_correction) {
using Geom::X;
using Geom::Y;
- Geom::Point start_pos = bez.initialPoint();
- Geom::Point end_pos = bez.finalPoint();
-
- Geom::Point start_normal = Geom::rot90(bez.unitTangentAt(0));
- Geom::Point end_normal = -Geom::rot90(Geom::unitTangentAt(Geom::reverse(bez.toSBasis()), 0.));
-
- // offset the start and end control points out by the width
- Geom::Point start_new = start_pos + start_normal*width;
- Geom::Point end_new = end_pos + end_normal*width;
-
- // --------
- double start_rad, end_rad;
- double start_len, end_len; // tangent lengths
- get_cubic_data(bez, 0, start_len, start_rad);
- get_cubic_data(bez, 1, end_len, end_rad);
-
double start_off = 1, end_off = 1;
// correction of the lengths of the tangent to the offset
if (!Geom::are_near(start_rad, 0))
- start_off += width / start_rad;
+ start_off += (width + width_correction) / start_rad;
if (!Geom::are_near(end_rad, 0))
- end_off += width / end_rad;
+ end_off += (width + width_correction) / end_rad;
+
+ // We don't change the direction of the control points
+ if (start_off < 0) {
+ start_off = 0;
+ }
+ if (end_off < 0) {
+ end_off = 0;
+ }
start_off *= start_len;
end_off *= end_len;
// --------
@@ -783,23 +787,137 @@
mid2_new = Geom::Point(end_new[X] - mid2_new[X]/3., end_new[Y] - mid2_new[Y]/3.);
// create the estimate curve
- Geom::CubicBezier c = Geom::CubicBezier(start_new, mid1_new, mid2_new, end_new);
+ c = Geom::CubicBezier(start_new, mid1_new, mid2_new, end_new);
+
+ // check the tolerance for our estimate to be a parallel curve
+
+ double worst_residual = 0;
+ for (size_t ii = 3; ii <= 7; ii+=2) {
+ const double t = static_cast<double>(ii) / 10;
+ const Geom::Point req = bez.pointAt(t);
+ const Geom::Point chk = c.pointAt(c.nearestTime(req));
+ const double current_residual = (chk-req).length() - std::abs(width);
+ if (std::abs(current_residual) > std::abs(worst_residual)) {
+ worst_residual = current_residual;
+ }
+ }
+ return worst_residual;
+}
+
+void offset_cubic(Geom::Path& p, Geom::CubicBezier const& bez, double width, double tol, size_t levels)
+{
+ using Geom::X;
+ using Geom::Y;
+
+ const Geom::Point start_pos = bez.initialPoint();
+ const Geom::Point end_pos = bez.finalPoint();
+
+ const Geom::Point start_normal = Geom::rot90(bez.unitTangentAt(0));
+ const Geom::Point end_normal = -Geom::rot90(Geom::unitTangentAt(Geom::reverse(bez.toSBasis()), 0.));
+
+ // offset the start and end control points out by the width
+ const Geom::Point start_new = start_pos + start_normal*width;
+ const Geom::Point end_new = end_pos + end_normal*width;
+
+ // --------
+ double start_rad, end_rad;
+ double start_len, end_len; // tangent lengths
+ get_cubic_data(bez, 0, start_len, start_rad);
+ get_cubic_data(bez, 1, end_len, end_rad);
+
+
+ Geom::CubicBezier c;
+
+ double best_width_correction = 0;
+ double best_residual = _offset_cubic_stable_sub(
+ bez, c,
+ start_normal, end_normal,
+ start_new, end_new,
+ start_rad, end_rad,
+ start_len, end_len,
+ width, best_width_correction);
+ double stepsize = std::abs(width)/2;
+ bool seen_success = false;
+ double stepsize_threshold = 0;
+ // std::cout << "Residual from " << best_residual << " ";
+ size_t ii = 0;
+ for (; ii < 100 && stepsize > stepsize_threshold; ++ii) {
+ bool success = false;
+ const double width_correction = best_width_correction - (best_residual > 0 ? 1 : -1) * stepsize;
+ Geom::CubicBezier current_curve;
+ const double residual = _offset_cubic_stable_sub(
+ bez, current_curve,
+ start_normal, end_normal,
+ start_new, end_new,
+ start_rad, end_rad,
+ start_len, end_len,
+ width, width_correction);
+ if (std::abs(residual) < std::abs(best_residual)) {
+ best_residual = residual;
+ best_width_correction = width_correction;
+ c = current_curve;
+ success = true;
+ if (std::abs(best_residual) < tol/4) {
+ break;
+ }
+ }
+
+ if (success) {
+ if (!seen_success) {
+ seen_success = true;
+ //std::cout << "Stepsize factor: " << std::abs(width) / stepsize << std::endl;
+ stepsize_threshold = stepsize / 1000;
+ }
+ }
+ else {
+ stepsize /= 2;
+ }
+ if (std::abs(best_width_correction) >= std::abs(width)/2) {
+ //break; // Seems to prevent some numerical instabilities, not clear if useful
+ }
+ }
// reached maximum recursive depth
// don't bother with any more correction
if (levels == 0) {
- p.append(c);
+ try {
+ p.append(c);
+ }
+ catch (...) {
+ if ((p.finalPoint() - c.initialPoint()).length() < 1e-6) {
+ c.setInitial(p.finalPoint());
+ }
+ else {
+ auto line = Geom::LineSegment(p.finalPoint(), c.initialPoint());
+ p.append(line);
+ }
+ p.append(c);
+ }
+
return;
}
- // check the tolerance for our estimate to be a parallel curve
- Geom::Point chk = c.pointAt(.5);
- Geom::Point req = bez.pointAt(.5) + Geom::rot90(bez.unitTangentAt(.5))*width; // required accuracy
-
- Geom::Point const diff = req - chk;
- double const err = Geom::dot(diff, diff);
-
- if (err < tol) {
+ // We find the point on our new curve (c) for which the distance between
+ // (c) and (bez) differs the most from the desired distance (width).
+ double worst_err = std::abs(best_residual);
+ double worst_time = .5;
+ for (size_t ii = 1; ii <= 9; ++ii) {
+ const double t = static_cast<double>(ii) / 10;
+ const Geom::Point req = bez.pointAt(t);
+ // We use the exact solution with nearestTime because it is numerically
+ // much more stable than simply assuming that the point on (c) closest
+ // to bez.pointAt(t) is given by c.pointAt(t)
+ const Geom::Point chk = c.pointAt(c.nearestTime(req));
+
+ Geom::Point const diff = req - chk;
+ const double err = std::abs(diff.length() - std::abs(width));
+ if (err > worst_err) {
+ worst_err = err;
+ worst_time = t;
+ }
+ }
+
+ if (worst_err < tol) {
if (Geom::are_near(start_new, p.finalPoint())) {
p.setFinal(start_new); // if it isn't near, we throw
}
@@ -809,7 +927,7 @@
return;
} else {
// split the curve in two
- std::pair<Geom::CubicBezier, Geom::CubicBezier> s = bez.subdivide(.5);
+ std::pair<Geom::CubicBezier, Geom::CubicBezier> s = bez.subdivide(worst_time);
offset_cubic(p, s.first, width, tol, levels - 1);
offset_cubic(p, s.second, width, tol, levels - 1);
}
@@ -827,9 +945,8 @@
offset_cubic(p, cub, width, tol, levels);
}
-void offset_curve(Geom::Path& res, Geom::Curve const* current, double width)
+void offset_curve(Geom::Path& res, Geom::Curve const* current, double width, double tolerance)
{
- double const tolerance = 0.0025;
size_t levels = 8;
if (current->isDegenerate()) return; // don't do anything
@@ -855,14 +972,14 @@
default: {
Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(current->toSBasis(), tolerance);
for (size_t i = 0; i < sbasis_path.size(); ++i)
- offset_curve(res, &sbasis_path[i], width);
+ offset_curve(res, &sbasis_path[i], width, tolerance);
break;
}
}
} else {
Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(current->toSBasis(), 0.1);
for (size_t i = 0; i < sbasis_path.size(); ++i)
- offset_curve(res, &sbasis_path[i], width);
+ offset_curve(res, &sbasis_path[i], width, tolerance);
}
}
@@ -949,6 +1066,7 @@
Geom::Path half_outline(Geom::Path const& input, double width, double miter, LineJoinType join)
{
+ double const tolerance = 5.0 * (width/100); // Tolerance is 5%
Geom::Path res;
if (input.size() == 0) return res;
@@ -963,12 +1081,13 @@
res.start(start);
// Do two curves at a time for efficiency, since the join function needs to know the outgoing curve as well
- const size_t k = (input.back_closed().isDegenerate() && input.closed())
- ?input.size_default()-1:input.size_default();
+ const Geom::Curve &closingline = input.back_closed();
+ const size_t k = (are_near(closingline.initialPoint(), closingline.finalPoint()) && input.closed() )
+ ?input.size_open():input.size_default();
for (size_t u = 0; u < k; u += 2) {
temp.clear();
- offset_curve(temp, &input[u], width);
+ offset_curve(temp, &input[u], width, tolerance);
// on the first run through, there isn't a join
if (u == 0) {
@@ -981,12 +1100,11 @@
// odd number of paths
if (u < k - 1) {
temp.clear();
- offset_curve(temp, &input[u+1], width);
+ offset_curve(temp, &input[u+1], width, tolerance);
tangents(tang, input[u], input[u+1]);
outline_join(res, temp, tang[0], tang[1], width, miter, join);
}
}
-
if (input.closed()) {
Geom::Curve const &c1 = res.back();
Geom::Curve const &c2 = res.front();
@@ -998,7 +1116,6 @@
outline_join(temp, temp2, tang[0], tang[1], width, miter, join);
res.erase(res.begin());
res.erase_last();
- //
res.append(temp);
res.close();
}
@@ -1010,9 +1127,8 @@
{
if (res.size() == 0 || temp.size() == 0)
return;
-
Geom::Curve const& outgoing = temp.front();
- if (Geom::are_near(res.finalPoint(), outgoing.initialPoint())) {
+ if (Geom::are_near(res.finalPoint(), outgoing.initialPoint(), 0.01)) {
// if the points are /that/ close, just ignore this one
res.setFinal(temp.initialPoint());
res.append(temp);
-
Connectez-vous pour ajouter un commentaire !