
An stroking procedure to accomodate
different alignments

Juan Luis Boya García

RFC ntrrgc@gmail.com

Here is described a procedure to stroke
shapes with two new alignments: inset and
outset.

Note: This procedure does not cover left
and right alignments. Actually those do not re-
quire most of the steps detailed here. For right
alignment is enough to calculate the outline
of the curve (e.g. with half_outline()) and
stroke it. Left alignment is performed in the
same way, reversing the path first.

I. Procedure

I. Step one: Division

On a first step, perform division of the shape
with a rectangle bigger than the shape (ideally
infinite, but shape size plus stroke width plus
miter limit would do the trick). As the result
you get many non self intersecting shapes, that
we will call here subshapes.

Figure 1 shows an example shape with thin
stroke and fig. 2 shows the result of applying
rectangle division to that shape. We obtain five
subshapes, shown each in a different color.

Figure 1: A relatively simple self-intersecting shape.

Figure 2: The subshapes resulting from applying divi-
sion.

The outermost subshape corresponding to
the rectangle is no longer needed. The rest of
the procedure must not take it into account.

The subshapes themselves are not enough
information though. Each point of self-
intersection of the original shape must be cal-
culated and linked to one vertex of each of
the subshapes that touch it. For the example
shape, those points are shown in yellow in
fig. 3. The outermost subshape from the rect-
angle has been removed too from that figure.

1

mailto:ntrrgc@gmail.com


Figure 3: Subshapes share the intersection points of the
original shape.

We will refer to each of those vertices as
intersection vertices. Additionally, we will refer
to the curve path between a pair of intersection
vertices of the same subshape as boundaries.

In the example shape we have four sub-
shapes: one for the purple curved triangle
at the center and one for each of the three
“leaves”. The curved triangle at the center has
three intersection vertices and three boundaries.
Each of the leaves have two intersection vertices
and two boundaries.

A boundary can lie on top (or coincide with)
of another boundary of another subshape. For
example, the bottom boundary of the upper
leaf coincides with the upper boundary of the
curved triangle of the center of the figure. For
the purposes of this procedure it is needed to
be able to find for any boundary of a subshape
its coincident one in other subshape.

Boundaries also have a sense of alignment
with others. Two boundaries of different sub-
shapes are aligned if they a) are connected to a
common intersection vertex and b) the end of
one boundary is contiguous to the start of the
other in the original shape (the single shape
we computed division on). This means that
you could travel from points at the end of one
boundary to points at the start of the other
without traveling any other points in between
if you were drawing with a pen following the
commands (line to and move to) that define
the original shape, in order.

Each intersection point is connected to four

boundaries, which are aligned two to two. Fig-
ure 4 shows the aligned boundaries connected
to an intersection point of the example shape.
Highlighted in the same color are the two pairs
of aligned boundaries.

Figure 4: Two aligned boundaries in blue and two
aligned boundaries in orange.

Issue 1: I don’t know any algorithm to get
the result of the division operation plus
all the required data mentioned in this
step.

II. Step 2: Fill check

For each subshape it must be checked if the
area inside corresponds to a fillable region in
the original shape. This check is done even if
the original shape is set by the user to not ren-
der any fill. The check will be made using the
evenodd fill rule even if another value is set in
the corresponding style property. fill-rule

will affect only fill of the shape, not stroke.
Because subshapes cannot self-intersect by

definition, checking if the subshape corre-
sponds to a filled region is equivalent to check-
ing if any point within the subshape is filled in
the original shape.

We well refer to those subshapes that cor-
respond to a fillable region as fillable subshapes
and those which do not as hollow subshapes.

Issue 2: How to check in Inkscape code
if a point is within the fillable area of a
shape?

2



Issue 3: How to get a point inside a shape
avoiding degenerate cases? Raycasting at
half the height of the shape and picking
the median of the first interval may be a
way if we can assure that there will not
be a case where a subshape contains a
zero-width triangle.

III. Step 3: Outline and stroke

The rest of the process depends on the desired
stroke alignment.

III.1 Step 3a: Inset stroking

For inset stroking only fillable subshapes are
considered.

The orientation of each subshape must be
calculated (clockwise or counter-clockwise). If
the subshape is clockwise, the subshape must
be rendered with left stroke alignment. Oth-
erwise, right stroke alignment must be per-
formed.

In any case, the stroke must be clipped to
the subshape so thick strokes do not cross the
subshape boundaries.

Figure 5 shows the example shape with
stroke inset.

Figure 5: stroke-alignment: inset

III.2 Step 3b: Outset stroking

In order to accommodate self-intersecting
shapes, outset stroking is somewhat more com-
plex than inset stroking. For reference of the
desired result, check both fig. 6, which shows

the result of applying outset stroke to our pre-
vious example shape and fig. 7, which shows
the expected result of the same operation over
a shape with many more intersections.

Figure 6: Outset alignment on our first example shape.

Figure 7: Outset alignment on a complex polygon. The
red line indicates the computed stroke. It is
hand drawn, so the line width is not accurate.

Let G be a graph-like structure. Each node
represents an intersection point. Each node
has exactly four connection slots, each hold-
ing an end of a boundary, represented as a
graph edge. Coincident boundaries will be
represented only in this graph.

Each connection slot has one of
the four names in the vector N =
[”A1”, ”B1”, ”A2”, ”B2”]. The connections are
sorted by the angle of the unit vector with
origin in the intersection vertex and direction

3



the tangent of the boundary end. In clockwise
order, A1 comes before B1, that comes before
A2 and so on. The sorting of angles is relative,
so there are four sets of equally valid sorts for
each set of tangent vectors. Any of these will
work.

Figure 8 shows a very simple graph for a
figure with one intersection that could have the
shape of the eight number. Notice that aligned
boundaries share a letter, e.g. A1 is aligned
with A2. Also, due to the angle sorting it is
very easy to traverse boundaries with a defined
direction: given a boundary connected to a cer-
tain slot of a node you can get the boundary
to the right by traversing through the connec-
tion slot with the next name in the vector N,
warping if necessary.

Figure 8: The graph describing what could be an eight
shape. The boundaries are drawn in a way that
recalls this shape.

Figure 9 shows the graph for a more com-
plex shape which is self-intersecting.

Figure 9: The graph of a self-intersecting path. The col-
ored areas are fillable subshapes.

Having this graph with all the bound-
aries and intersection points, we remove
the boundaries corresponding to hollow sub-
shapes. These subshapes will be stroked inset
as explained in section III.1.

Figure 10: The boundaries corresponding to hollow sub-
shapes have been removed, greatly reducing
the complexity of the graph, which now only
contains the outer border of the shape.

Figure 10 shows the graph for the previous
example shape after removing boundaries of

4



hollow subshapes. Using this graph we fill find
the outer border of the shape, which is defined
as a path such that:

1. It traverses all the remaining boundaries
reachable from the starting node.

2. No boundary is traversed twice.

3. Crossing a node always triggers a direc-
tion change, i.e. if the path arrives at a
node at an A slot it must exit by a B slot
and vice versa.

A simple algorithm for finding such a path
consists on parting from any boundary of any
selected start node in a given direction and
gearing right at every intersection node found
in the path until arriving the start node. Then

do the same again, but gearing always left in-
stead. One exploration will traverse the out-
side border of the shape while the other will
traverse only a cycle in the graph or may try to
gear towards a removed boundary.

Pick the path with the most boundaries as
the outside border of the shape. If there are
still boundaries to be traversed in the graph
then the shape is disconnected. Remove the
boundaries used by the picked path and re-
peat the algorithm starting from other node
as many times as needed to find every outer
border path.

Finally, the orientation of each border path
must be calculated. Clockwise paths will be
stroked with left alignment and counterclock-
wise paths will be stroked with right stroke
alignment. The result for the previous example
shape is shown in fig. 11.

Figure 11: The expected result of stroking a self-intersecting shape with outset alignment.

5


	Procedure
	Step one: Division
	Step 2: Fill check
	Step 3: Outline and stroke
	Step 3a: Inset stroking
	Step 3b: Outset stroking



